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1.0 Introduction

This report documents the research in the management of uncertainty

in military scene analysis performed at the University of

Missouri-Columbia under the Air Force Office of Scientific Research

grant number AFOSR-87-0226 during the period June 1, 1987 to May 31,

1988. The research accomplishments are summarized in section 2. These

topics are then expanded upon in subsequent sections. Our research on

uncertainty modeling is developed in section 3. Section 4 describes the

results obtained using fractal geometry for region description. In

section 5, we present a new method for a fast least squares approach to

linear discriminant analysis. Two rule-based systems for Automatic

Target Recognition (ATR), one incorporating uncertainty using the fuzzy

integral and Dempster-Shafer belief theory and the other using fuzzy

logic, are described in section 6. Finally, in section 7, we present

the preliminary results on the use of external context in modifying the

confidence results from the numeric-based ATR system.

The breadth of the research was made possible by the

interdisciplinary nature of the UMC research team and the close

cooperation of Emerson Electric Electronics and Space Division in St.

Louis. We have been performing AmR-related computer vision research in

Emerson Electric for five years and this relationship has strengthened

the quality of the research described herein.

2.0 Sumary of AccouDlishments

The goal of this research, as stated in the proposal, was to

perform the basic research necessary to model and effectively handle

uncertainty present in military scenes for the detection and recognition
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of image regions and objects. Six papers, two Ph.D. dissertations and

one H.S. Thesis resulted from the research performed under this grant.

Two more papers stemming from the dissertations are currently under

preparation.

In order to accomplish the above stated goal, several thrusts were

pursued. We approached the modeling of uncertainty in computer vision

from two directions. In the first approach, we modeled the uncertainty

in a proposition numerically. We developed a new nonlinear information

fusion technique, the fuzzy integral, to combine low level objective

information from object features with the expectation of importance of

these features towards object classification [1,2]. These values were

used to create support functions in the Shafer sense (3], and the

results from different algorithms and rules were combined using

Dempster's Rule in an ATR system (4]. The alternate direction involved

the development of a new fuzzy logic inference mechanism (5]. This new

technique which uses the concept of truth value restriction was shown to

be superior to ten accepted fuzzy logic inference schemes under a

variety of conditions (5]. We built a fuzzy logic rule-based system for

ATM and tested it on the same data used for the numeric scheme with

excellent results. The results of both systems will be described in

subsequent sections.

During this past year, we performed research into the description

of natural scene regions using fractal geometry (6-8]. This involved

extensions of our previous work to surfaces (9]. The invariance of

fractal dimension coupled with the sensitivity of our new parameter, the

average Holder constant, have resulted in new algorithms for

determination of distance and orientation of fractal regions [8].
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Our new implementation of lacunanty 16,8] has produced excellent texture

description and segmentation.

In any pattern recognition problem, the dimensionality of feature

space poses problems for computation. Linear discriminant analysis is

one technique to reduce the dimensionality while preserving the

separability of the data. We have used these methods successfully in an

earlier contract from Emerson Electric to perform target detection and

recognition using vectors of gray levels from image windows [10,11]. In

[12] we developed methods for fast solutions to two problems in a least

squares sense. Both techniques avoid potentially disastrous errors from

calculating large cross-product matrices.

The methods developed for modeling and manipulating uncertainty in

military scene analysis were incorporated into rule-based systems (4,5].

These systems were tested with data extracted from sequences of FLIR

images. The results demonstrated the flexibility and inherent

advantages of such approaches. Finally we incorporated a preliminary

methodologies for modifying the confidence values generated by both

systems based on external context (13]. These approaches show

considerable promise, and more work is currently underway.

Each section in this report is self contained in that references,

figures, and tables are all included within the section for ease of

reading among the different topics.

1. H. Tahani, *Information Fusion in Computer Vision Using the Fuzzy
Integral", M.S. Thesis, University of Missouri-Columbia, 1987.

2. H. Tahani and J. Keller, "The Fusion of Information in Computer
Vision Using the Fuzzy Integral", IEEE Trans. Svst. Man and
Cvjr. under review.
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3. G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, 1976.

4. J. Wootton, J. Keller, C. Carpenter, and G. Hobson, "A Multiple
Hypothesis Rule-Based Automatic Target Recognizer", in Pattern
Recognition, Lecture Notes in Computer Science, Vol. 301, J.
Kittler (ed.), Springer-Verlag, 1988, pp 315-324.

5. A. Nafarieh, "A New Approach to Inference in Approximate Reasoning
and its Application to Computer Vision", Ph.D. Dissertation,
University of Missouri-Columbia, 1988.

6. J. Keller, S. Chen, and R. M. Crownover, "Texture Description and
Segmentation Through Fractal Geometry", Computer Vision. Graphics,
and Imagi Processina, accepted for publication.

7. S. Chen, J. Keller, and R. Crownover, "On the Calculation of
Fractal Features from Images", Second Int. Conf. on Computer
Vision, Tarpon Springs, FL, Dec. 1988, under review.

8. s. Chen, "Fractal Geometry in Image Understanding", Ph.D.
Dissertation, University of Missouri-Columbia, 1987.

9. J. Keller, R. Crownover, R. Chen, "Characteristics of Natural
Scenes Related to the Fractal Dimension", IEEE Trans. Pattern Anal.
and Machine Intell., Vol. 9, No. 5, 1987, pp 621-627.

10. J. Keller, R. Crownover, J. Wootton, and G. Hobson "Target
Recognition Using the Karhunen-Loeve Transform", Proc. Inc. Conf,
on Svst. Man and Cybern., Tucson AZ, Nov. 1985, pp 310-314.

11. G. Hobson, J. Keller and R. Crownover, "Method of Extracting
Uncorrelated Features from Gray Level Images for Target
Recognition", Proc. 8th Annual Sy= osium on Ground Vehicle
SignatuoA, Vol. I, Houghton, MI, Aug 1986, pp 208-214.

12. R. Crownover, "A Least Squares Approach to Linear Discriminant
Analysis", SIAM J. Scientific. Stat Coumut., under review,

13. A. Mogre, R. McLaren, and J. Keller, "Confidence Modifica:ion Using
Context in Computer Vision", Proc. SPIE Svm~osium on Intelligent
Robots and Conmuter Vision, Cambridge, MA, Nov. 1988, to appear.
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3. Modeling of Uncertainty in Computer Vision

In our research on modeling uncertainty in military scene analysis,

we took both numeric and set-based approaches. On the numeric side, we

implemented a Dempster-Shafer belief structure in a rule-based ATR

(explained in section 6) and developed an information fusion technique

around the fuzzy integral. On the other hand, we developed a new fuzzy

logic inference scheme and built a prototype ATR scene analysis system

with 50 rules. In this section we describe the research based of fuzzy

set theory. The rule-based systems are presented in section 6.

3.1 Fuzzy Logic in Computer Vision

Fuzzy sets were introduced by Zadeh in 1965 [1]. Since that time,

researchers have found numerous ways to utilize this theory to

generalize existing techniques and to develop new algorithms in pattern

recognition, decision analysis and risk analysis [2-10]. Fuzzy sets

generalized the traditional membership of an element in a set from the

binary (0,1) to a value in the interval [0,1]. Most traditional or

crisp set theoretic operations have analogs in fuzzy set theory [11].

We have developed both pattern recognition algorithms and segmentation

techniques which incorporate membership information into the final

decision (6-10,121.

Possibility distributions (4-5] form the basis for fuzzy logic. If

Y is a variable which takes values in a universe of discourse U, then a

possibility distribution associated with Y may be viewed as an elastic

constraint on the values that may be assigned to Y. For example, if F

is a fuzzy subset of U characterized by its membership function
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AF:U---(O,l], then-the statement "Y is F" translates into a possibility

distribution for Y being equal to F. In particular, we may write

Possibility (Y - u) - PF(u).

In this way we are able to effectively model conditions in real

military scenes such as:

roads are usually straight and thin,

treelines are rugged,

background clutter is high,

features a, b, c work well at night to describe tanks.

Fuzzy logic has been developed to provide decision making

capabilities in the presence of uncertainty [4-5]. Its structure is

rule based. However, in this case, the uncertainty in statements and

conditions is modeled as possibility distributions. The antecedent

clause, the consequent clause or both, may be represented as possibility

distributions. As an example, we may have a rule such as

IF the region is straight and thin,

THEN the region is a ROAD;

or more generally

IF the region is straight and thin,

THEN confidence in the class ROAD is high.

In this example, straight, thin, and high are modeled by possibility

distributions over appropriate domains: straight may be defined as a

fuzzy set in terms of average curvature, thin by the diameter of the

region, and high by a fuzzy set over a closed interval of reals. A

system of inference, called approximate reasoning, has been developed to
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make deductions from statements expressed in terms of possibility

distributions.

The original fuzzy inference mechanism extended the traditional

modus ponens rule which states that from the propositions

P1: If S is A Then Y is B

and P2: X is A,

we can deduce Y is B. If proposition P2 did not exactly match the

antecedent of Pl. for example, X is A', then the modus ponens rule would

not apply. However, in (51, Zadeh extended this rule if A, B, and A'

are modeled by fuzzy sets, as suggested above. In this case, P1 is

characterized by a possibility distribution.

1(Xly)- R where

PR(u,v) - min (1, -ax ((l'-A(u)), PB(v))).

It should be noted that this formula corresponds to the statement

"not A or B", the logical translation of P1 . Zadeh now makes the

inference Y is BI from &R and pA by

PBI (v) - m a x (mAn (pR(u,v), pA'(u))"

While this formulation of fuzzy inference directly extends modus

ponens, it suffers from several problems (13,14]. In fact, if

proposition P' is nX is A," the resultant fuzzy set is not exactly the

fuzzy set B. Several authors [13-16] have performed theoretical

investigations into alternative formulations of fuzzy implications.

Besides changing the way in which P1 is translated into a
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possibility distribution, methods involving truth modification have been

proposed. In this approach, the proposition X is A' is compared with X

is A, and the degree of compatibility is used to modify the membership

function of B to get that for B'.

During this past year, we have developed a new scheme for truth

value restriction based on a novel compatibility measure between the

fuzzy set A and A' (13]. In this methodology, we define

IA nllA'
comp (A, A') -

JA U A'l

where * denotes the area under the fuzzy set. This formulation of

the compatibility retains all the information in A and A'.

From this compatibility, a truth restriction was obtained [13] and

the result of the fuzzy implication was generated. We have proved that

this technique provides the intuitively correct exact results under

reasonable hypotheses, and that it outperforms the other approaches in

numerous simulation studies. Table 1 gives the fuzzy set definitions

for a simple set of linguistic terms used in one simulation study.

Table 2 shows intuitive relations which should exist when the inputs may

not exactly match the rule but are given as functions of the antecedent.

Table 3 gives the percent error obtained for several values of

antecedent for the ten standard operators and our new scheme (labeled

"proposed'). Note that in all cases the new inference mechanism

produced the correct result with no error. Also shown is the result of

Modus Tollens on the same rule, where again, the new method outperforms

the other ten.

Complete results of the various simulation studies can be found in

(13], the body of which is included in the appendix. In section 6 we
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apply this new reasoning approach to a prototype fuzzy logic production

system for an automatic target recognition problem.

Table I. The meaning of linguistic terms over the domain

[1,11] sampled at integer points.

Name Membership

small 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
very small 1.00 0.45 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
morl small 1.00 0.82 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
not small 0.00 0.33 0.57 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
medium 0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.50 0.25 0.00 0.00
very medium 0.00 0.00 0.06 0.25 0.56 1.00 0.56 0.25 0.06 0.00 0.00
morl medium 0.00 0.00 0.50 0.71 0.87 1.00 0.87 0.71 0.50 0.00 0.00
not medium 1.00 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.00
high 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00
very high 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16 0.36 0.64 1.00
morl high 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.63 0.77 0.89 1.00
not high 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.60 0.40 0.20 0.00
unknown 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

morl - more or less

Table 2. Some intuitive relations between X and Y in
proposition "If X is B then Y is C".

Relation If Then

I (modus ponens) X is B Y is C

II X is y•er B Y is v C

III X is 2re orJlessB Y is more or less C

IV X is oB Y is unknown

V (modus tollens) Y is o C X is not B
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Table 3. Percentage error in applying different operators on
implication "If X is small then Y is Hjjh" for several
values of X and Y.

% error when X is % error when Y is
Operator

small very small morl small not small not high

1 41 57 53 0 5

2 41 57 53 0 5

3 41 57 53 11 5

4 0 27 20 86 93

5 47 58 51 0 8

6 0 20 15 0 6

7 22 24 21 0 2

8 63 65 60 0 10

9 46 58 51 0 8

10 47 58 51 0 8

proposed 0 0 0 0 0

expected high very high morl high unknown not small
result

morl - more or less

-10-



3.2 The Fuzzy Integral and Information Fusion

In this section we describe the research involving the fuzzy

integral and confidence generation in military application of computer

vision. Full details can be found in (17], which is included in the

appendix.

Information fusion is an important aspect of any intelligent

system. The rationale behind bringing multiple input information

sources is that the information that we have to deal with in each source

is either partial or contaminated, that is, it is uncertain and/or

imprecise (18-20]. An example of such a system is the following: In

the field of computer vision the goal of image understanding is the

design and implementation of a system which will be able to determine

the mapping from what is actually sensed, the image, to the scene of

interest. The system must be able to determine what objects are in the

scene and in what spatial relationship they lie. Unfortunately, the

problem is vastly underconstrained, in general, since images are

ambiguous and can be the result of an infinite number of scenes. Now,

by adding multiple input information sources ambiguities may be resolved

because similar aspects of the scene will be encoded in different ways

by different information sources.

The question of certainty in a representation or decision is,

however, a question of evidence. Each source of information can be

considered as a body of evidence for supporting or rejecting a decision

or hypothesis. The task is to combine this evidence to make a final

decision. We now define the fuzzy integral as an evidence combination

scheme.

-11-



Definition 1. Let X be a non-empty set, 8 be a a-algebra of X. A fuzzy

measure is a real valued set function g defined on $ satisfying the

following properties:

(1) g(O) - 0, g(x) - 1;
(2) If A, B e 6 and A C B, then g(A) < g(B);
(3) If (A) e P such that A1 C A2 C ....

then g( U Ai) - lim g(Ai).
i-1 J-0

We note that fuzzy measure generalizes probability measure in

that it does not require additivity. A particularly useful set of fuzzy

measures is due to Sugeno (21].

Definition 2. Let g. be a fuzzy measure satisfying the addition

property:

If A n B - 0, then g,(A U B) - gX(A) + gX(B) + A gX(A)gX(B),
for some A > -1.

Then gA is called a Sugeno measure.
i

Suppose X is a finite set, X - (xI, .... xn ), and let g - ((xi)).

1 nThen the set (g , ... , g ) is called the fuzzy density function for g x

Using the above definitions one can easily show that g. can be

constructed from a fuzzy density function by

g~(A) ( A 1 + Ag ) - l1A,

n
for any subset A of X. Using the fact that X -iE 1 (xiY, A can be

-12-



determined from the equation

n
1 [- a (l+Ag) -+/A. (1)

Definition 3. Let H: X- (0,1]. The fuzzy integral of h over X with

respect to g. is defined in (21] by:

h(x)Og, - sup (a A gA (Fa)]

a([0,l]

where F - (x e X I h(x) > a).

If X is a finite set, X - (x1 , .... x)n}, arranged so that

h(xI) > h(x 2 ) >... > h(x n), then

n

xh(x)Og, - 1 .1 [h(xi) AgX (Xi)] (2)

where Xi - (Xl, ... , xi). Also, given A as calculated above, the values

gX(X ) can be determined recursively as

gx(XQ) - gx((x 1 )) - g 1 ; (3a)

gX(Xi) - gi + gA(Xi. 1 ) + gigX(X i 1 ) (3b)

for 1 < i < n.

The fuzzy integral is interpreted as a subjective evaluation of objects

where the subjectivity is embedded in the fuzzy measure. In comparison

with probability theory, the fuzzy integral corresponds to the concept

of expectation (211. In general, fuzzy integrals are nonlinear

-13-



functionals (although monotone) whereas ordinary (eg, Lebesque)

integrals are linear functionals. It is this nonlinear subjective

evaluation potential of the fuzzy integral which we utilize in the

fusion of different information sources.

The calculation of the fuzzy integral with respect to a gA fuzzy

measure only requires the knowledge of the density function, where the

.th i__ density, g , may be interpreted as the degree of importance of x.

for i - 1,2,..., n. The degree of importance, furthermore may be

interpreted as a belief function if

n

gi < 1,

i-l

and a plausibility if this sum is greater than 1.

The fuzzy integral was used as a segmentation tool in [9,10].

Here, the design and the implementation of an object recognition system

using the fuzzy integral will be explained. The output of this system

can be considered as a decision, or a hypothesis for a higher level of

recognition.

In many cases, an object can be represented as a vector in an

n-dimuensional Euclidean space, where each component of this vector is a

feature measured from that object. There are many different types of

features that can be calculated from objects, e.g. shape measures,

texture measures, and statistical measures, to name a few. The reason

for measuring different features is that there is usually no single

feature that can identify the objects of interest. In fact, there is

-14-



normally no set of features which always distinguishes an object from

others precisely. There is always an uncertainty inherent in the

recognition problem. Instead, each feature or group of features can be

considered as evidence in the identification of an object. Obviously,

each of these features or group of features would have a degree of

importance in the identification of an object.

Let X be an object described by n features, X - (x1, ... xn). For

each pattern class wj, let uj: X- [0,1]. Thus, u is an objective

partial evaluation of X from class w , that is, for each feature xi,

/Aj(xj) measures the membership of X in w from the standpoint of a

single feature x . This partial evaluation is combined with the

subjective measure gXJ which represents the important degree of the

subset Xi - (x * .... , xi) of X. For example, g~j(XI) - gxj((Xl))

expresses the extent to which a viewpoint of feature x1 is important in

evaluating objects from class wj, and for i > 1,

xj(X i) - gXj((xl .... xi)) expresses the degree to which the set of

viewpoints (xI, .... xi) contribute to the recognition of objects from

class wv. The fuzzy integral value,

n
ej - [u (xi) ^g J (xi) (4)

gives a nonlinear evaluation of the degree to which object X belongs to

class wv.

The Sugeno measure gAJ for each class is generated from a fuzzy

density function (gj , ... g fln) by equation 3. The densities for each

feature can be obtained subjectively from an expert or can be generated

from a set of training data. The attractiveness of this is that one

-15-



need only consider a single feature (or small group of features) to fix

the density function from which the entire fuzzy measure is calculated.

This same approach is used to combine information from different

algorithms, different sensors or information over time. The fuzzy

integral is a very general paradigm in this regard.

Results of this algorithm on simulation data can be found in [171.

Here we highlight the application to military imagery. The data

consisted of several sequences of FLIR images containing an armored

personnel carrier (APC) and two different tanks. A pre-processing step

was run on each image to detect objects of interest, and features were

calculated for each of these objects.

The feature level integration was performed using four statistical

features. To get the partial evaluation, h(x), for each feature we used

the fuzzy 2-mean algorithm (2]. The fuzzy densities, the degree of

importance of each feature' were assigned subjectively based on how well

these features separated the two classes Tank and APC on training data.

The result is presented in the form of confusion matrix, in Table 4,

where the count of samples listed in -, row are those which belong to

the corresponding class and the count of samples listed in each column

are those after classification. As can be seen, the fuzzy integral

performed better than Bayes of this data set.

Next throe classifiers, the fuzzy integral, the Bayes classifier

and the fuzzy perceptron were applied to the data. The a posteriori

probabilities obtained from the Bayes classifier together with

classification results from fuzzy integral and the fuzzy perceptron were

taken as partial evaluations for the objects of interest. The degree of

importance was subjectively based on how good these classifier performed

-16-



on a training data set. Then these bodies of evidence were combined

using the fuzzy integral. The results are in Table 5. The results show

that this methodology produces good estimates of class confidence based

on the objective information and the subjective expectation of the

importance of this information. As can be seen, objects 13 and 14

(AFC's) were misclassified by the Bayes algorithm. However, in the

final evaluation, they were correctly classified. The effect of

misclassification by Bayes has given rise to small fuzzy integral values

for the APC hypothesis in both cases. This information can be used by

an intelligent monitor to initiate more sophisticated procedures to

increase confidence in class membership.

Table 4a

The result of the feature level fuzzy integral

1 2 3 4
g g 9 g

Tank 0.1 0.21 0.2 0.3 0.736

APC 0.08 0.15 0.17 0.24 2.022

Tank ARC

Tank 100.0% 176 0

ARC 71.20 19 47

Total Correct: 92.150

Table 4b

The result of the Rayes classifier

Tank APC

Tank 100.0% 176 0

"ARC 66.7% 22 44

Total Correct: 90.91%
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Table 5a

The result of information fusion using the fuzzy integral on
three different classifiers for Tank

Actual Partial evaluation for Tank Fuzzy Integral
Object Evaluation for
Class Bayes Fuzzy Feature level Tank

K-mean Fuzzy integral Hypothesis

1 Tank 1.00 0.77 0.68 0.68
2 Tank 1.00 0.85 0.71 0.71
3 Tank 1.00 0.81 0.71 0.71
4 Tank 1.00 0.83 0.71 0.71
5 Tank 1.00 0.76 0.71 0.71
6 Tank 1.00 0.78 0.66 0.66
7 Tank 1.00 0.83 0.66 0.66
8 Tank 1.00 0.78 0.68 0.68
9 Tank 1.00 0.73 0.64 0.64
10 APC 0.44 0.44 0.40 0.40
11 APC 0.00 0.27 0.27 0.27
12 APC 0.00 0.53 0.49 0.43
13 APC 0.99 0.26 0.25 0.26
14 APC 0.97 0.18 0.21 0.21
15 APC 0.00 0.23 0.27 0.23
16 APC 0.00 0.23 0.24 0.23
17 APC 0.00 0.29 0.28 0.28
18 APC 0.00 0.29 0.26 0.26
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Table 5b

The result of information fusion using the fuzzy integral
on three different classifiers for APC

Actual Partial evaluation for Tank Fuzzy Integral
Object Evaluation for
Class Bayes Fuzzy Feature level APC

K-mean Fuzzy integral Hypothesis

1 Tank 0.00 0.23 0.32 0.23
2 Tank 0.00 0.15 0.28 0.20
3 Tank 0.00 0.19 0.29 0.20
4 Tank 0.00 0.17 0.28 0.20
5 Tank 0.00 0.24 0.27 0.24
6 Tank 0.00 0.22 0.34 0.22

""" 7 Tank 0.00 0.17 0.34 0.20
8 Tank 0.00 0.22 0.32 0.22
9 Tank 0.00 0.27 0.36 0.27
10 APC 0.56 0.56 0.55 0.55
11 APC 1.00 0.27 0.73 0.72
12 APC 1.00 0.49 0.47 0.47
13 APC 0.01 0.75 0.65 0.33
14 APC 0.03 0.82 0.65 0.33
15 APC 1.00 0.77 0.59 0.24
16 APC 1.00 0.77 0.65 0.65
17 APC 1.00 0.72 0.65 0.65
18 APC 1.00 0.74 0.65 0.65
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4.0 Fractal Geometric Scene Characteristics

One of the tasks this past year was to study fractal geometry and

its applications to computer vision. Our goal is to develop robust

parameters for region description and segmentation. We made significant

progress in texture description and segmentation, improved calculation

of fractal dimension, and surface orientation from fractal parameters.

Fractal geometry provides useful models for describing complex

surfaces and curves in images of natural scenes. It is important to be

able to identify background clutter for optimal performance of target

recognition algorithms and it is important to be able to ascertain

distance scales and shape of terrain in these images. Our recent work

(1-4] on the use of fractal models introduces new concepts and

approaches for recognizing fractal objects, distances of these objects

from the image plane, texture segmentation from fractal features, and

recovering shape from fractality.

A fractal is a geometric configuration having Hausdorff dimension

(usually a fraction) that is greater than its topological dimension.

The fractals of natural scenery are statistically self-similar, in that

any part can be decomposed into a certain number N of copies that are

scaled by a factor of r having the same statistical properties. The

parameters N and r are related to the fractal or self-similarity

dimension by the equation

Nrd- I

or

d - log(N)/log(l/r).

-22-



B. Madelbrot, who introduced the term fractal, has written a

diverse casebook on fractals in nature [5]. In addition, Mandelbrot and

Van Ness (6], introduced the fractional Brownian motions, in terms of

which most of the fractal models we have utilized thus far are

expressed. A fractional Brownian motion (fBm) is a generalization of

classical Brownian motion (in one or more variables). An important

property of a fBm B(t) is that the increments are Gaussian normal,

satisfying

H
Pr([B(t + T) - B(t)/ T <x) - erf(x),

where H is a parameter relating the fractal dimension d of the graph of

B by d - 2 - H for the one-variable case or d - 3 - H for the

two-variable case. The standard deviations of the increments satisfy a

power law

H
a(B(t + T) - B(t)) - c T

which is important in determining the parameter H, and hence the fractal

dimension d. This is done by plotting log (a) vs. log ( T ) and

performing linear regression analysis.

In a series of papers, including [7,8], Pentland has presented

evidence that most natural surfaces are spatially isotropic fractals and

that their intensity images are also fractals. In arguing the

suitability of the fractal model, Pentland set forth a methodology to

compute the fractal dimension using the fBm model and to use this

evaluation to perform texture segmentation and classification.
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Medioni and Yasumoto [91 conducted further research on segmenting

natural scenes using fractal parameters. They concluded that fractal

dimension alone cannot separate textures that differ in roughness.

Peleg et al. (10], using still other methods, reported good

classification results and that fractal measurements can prove helpful

in characterizing texture. A maximum likelihood estimator was developed

by Lundahl et al. [11] to estimate the fractal dimension related to

parameter H. Their work was applied to X-ray images and indicated

strong potential for quantifying texture.

A parameter related to H, the average Holder constant, is defined

as

a - avg(logIB(t+T) B(t)l/log( T )).

For small increments, a - H. In (1-3], we derived a more useful higher

order relation. We showed that for a fBm, the average Holder constant

in the one-variable case satisfies

a - H + c/log( T ). (1)

If the graph of a fBi is scaled by a factor of s, or if an intensity

image of such a graph is scaled, then the average Holder constant as for

the scaled version satisfies

C8  1 clog (s) + c 2. (2)

Thus the average Holder constant is scale sensitive in a

recoverable way. Equivalently, the average Holder constant is sensitive

to the distance of an object from. the image plane. This property

allowed us to make distance estimates of tree silhouettes and mountain
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silhouettes in images. Figure 1 shows a plot of the average Holder

constant verses the log of the scale factor for a sequence of images of

a tree scene at different scales. The regression line is also included

to demonstrate the linearity of the average Holder constant with respect

to log(X). In [I] this was used to predict the scale of an image. In

addition, an initial study at UMC has been completed by Chen (4] on

recovering the orientation of a plane that is a fractal surface. Chen

used perspective geometry of images as described by Ohta et al. (12] in

addition to properties of average Holder constants.

The above estimates require that the fractal be modeled by a

fractional Brownian motion. More generally, the dimension of a fractal

set can be calculated by the box dimension. The box dimension of a

self-similar fractal is defined in terms of the number of boxes N(L) of

side L that it takes to cover the set. The quantity N(L) is related to

the fractal dimension by

N(L) - c/Ld

and the value of d is determined from linear regression analysis from

the plot of log(N(L)) vs. log(L).

Voss (13] introduced a sharper calculation of the box dimension in

which he used the parameter P(m,L) - Pr(m points lie in a box of side L

centered at an arbitrary point in the fractal set). If K is the number

of points in the image and N is the number of points in a box of side L,

then

N
N(L) -Z )P(m,L),

M-1

and thus
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N d
- P(m,L) - c/L

rnimM-1

Again, linear regression for a log-log plot is used to determine

the dimension d. If box sizes are too small, these box dimension

calculations are in error due to the sparsity of boxes relative to the

curve to be covered. In our papers (2,4], the extent of this error is

investigated and lower bounds for box sizes that give correct results

are explored through simulations. A new method of calculating the box

dimension is presented, based on interpolating the curve or surface

linearly and adding more boxes so as to completely cover.the

interpolated curve. It is shown that this new method significantly

corrects the deficiencies of the previous methods. As an example,

figure 2 shows the histogram of estimated fractal dimensions (as

described in [9]) of a fractal mosaic image comprised of regions with

fractal dimensions 2.2, 2.4, and 2.6, each region generated by the

Fourier Spectrum method (7]. The dimension was estimated for windows of

16 x 16 pixels with a movement of 4 pixels between windows. It is

difficult, if not impossible, to determine two good thresholds to

segment this image. The straight implementation of box dimension

produced vorse results. Figure 3 shows the corresponding histogram.

However, the new interpolation method produced the histogram shown in

figure 4. As can be seen this approach yielded excellent separability

in the composite image. More details of this method can be found in

[2), and which is included in the appendix. Figure 5a shows the fractal

composite image, whereas Figure 5c and 5d shows the segmentation of this

image by the interpolated and non-interpolated box dimension. The
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segmentation was performed by the K-Means clustering algorithm. The

interpolated box dimension alone produced excellent results.

Mandelbrot (5] and Voss [13] have introduced lacunarity (gap)

measurements to distinguish fractals that have the same dimension.

Mandelbrot's lacunarity measurement is

A- E 1(- l -1)]

where W is mass and E(.) is expected value. Voss's lacunarity is

defined in terms of

N
M(L) - Z mP(m,L)

M-I

and
N 2

M2(L) - Z m P(m,L),
M-i

and is given by

A(L) - M(L) [M(L)] 2

(M(L)) 2

In [3,4] we introduced a new lacunarity measurement,

C(L) - M(L) - N(L)
M4(L) + 14(L)

where
N

N(L) - E - P(m,L),
m-1 m

which like the others, is a second order statistical property of the

mass distribution. It was found that the new lacunarity measurement

gives improved texture segmentation compared to the previous methods and

that the best texture segmentation results from using feature vectors
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consisting of the fractal dimension d and the lacunarity measurements

C(L) for several, say 4, values of L. Such segmentations significantly

improve performance over those using just the fractal dimension. Figure

5(b) displays the results of segmentation of the fractal composite using

interpolated fractal dimension and 4 lacunarity values. Note that the

only classification errors occur at the region boundaries. However, as

should be expected for artificially generated fractal surfaces, there is

little improvement over using just our new estimate of dimension.

For texture images, however, the situation is different. Figure

6(a) displays 4 natural textures: pigskin, grass, sand, and raffia.

Figure 7 gives the histograms of fractal dimension for the images of

those textures. As can be seen, there is little difference in the

dimension values to allow segmentation or description. Figure 6(b)-6(d)

shows segmentation results using dimension and lacunarity. Again, our

new estimate of box dimensions, coupled with our lacunarity estimates

produced excellent results.
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AVERAGE HOLDER VS. LOG(LAMBDA)
SHOWN WITH REGRESSION LINE

Figure 1. Plot of average Holder constant verses the log of~scale
factor.
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Figure 2. Histogram of estimated fractal dimension for windows in
fractal, mosaic by method in (9].
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Figure 3. Histogram of box dimension estimated from fractal mosaic

(non-interpolated).
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Figure 4. Histogram of box dimension estimated from fractal mosaic
(interpolated)
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(a)

(c) (d)

Figure 5. (a) Composite of three artificial fractal surfaces;
(b) Segmentation using interpolated box dimension and
lacunarity;(c) Segmentation using interpolated box dimension
only;(d) Segmentation using non-interpolated box dimension
only.

(a) (b)

(c) Y.: d)

Figure 6. (a) Four texture composite;(b) Segmentation using 4
lacunarity features of Voss [131;(c) Segmentation using 4 new
lacunarity features and non-interpolated box dimension;
(d) Segmentation using 4 new lacunarity features and
interpolated box dimension.
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5. A Least Souares ApDroach to Linear Discriminant Analysis

An important technique for object recognition and classification

in image analysis, speech recognition, and other situations where

intelligence is gleaned from comparison with training data, is to first

reduce the dimension of the space in which the data is stored. Object

data is represented as vectors is a high dimensional space, perhaps of

dimension in the hundreds or thousands. These vector, along with the

ones to be recognized, are projected into a very low dimensional space,

even as low as one dimension, in such a way that the separation of

prototypical classes is best preserved. It is then anticipated that

object recognition algorithms will perform at their best because of the

reduced computational load and reduced accumulation of round-off error.

Perhaps the best known of these dimension reduction techniques is

Fisher's linear discriminant method (1-3.5,7]. Fisher's method requires

the solution of a generalized eigensystem of the type also known as a

generalized singular value decomposition. Early implementations called

for computing large cross-product matrices, causing them to be

ill-conditioned. They were also computationally expensive. Newer

methods [8,9,11] improve that situation but don't take advantage of the

rich structure inherent in the Fisher problem.

We present a new approach that takes advantage of the special

structure of Fisher's method, is well-conditioned, and reduces the

computational load. The idea is to project, as best possible in the

least squares sense, the vectors in a given class onto a single point in

the smaller dimensional space. First, a preliminary optimization

problem is solved to find the right projection points. We have
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developed two algorithms. The first, which is more stable in the nearly

rank deficient case, uses the singular value decomposition. The second

and faster method makes use of orthogonal triangularization (Q-R

factorization). It is the method that should be used if updating the

data vectors is anticipated. Both methods avoid potentially disastrous

errors from calculating large cross-product matrices.

Suppose we have k vectors in Rn divided into c classes or clusters,

with kI vectors in class 1, k 2 vectors in class 2 and so on through

class c, having k c vectors. Thus k - k +...+ kc. Let Zi be the n x k

matrix having columns that are the vectors in class i and let Z -

(Zip.... ,Zc] be the n x k matrix of all data vectors. We assume that Z

is of full rank.

The problem we address is that of projecting the given data from Rn

into a smaller dimensional space Rp (p < n; usually p - c-l) in such a

way that correct identification of class membership can be determined

from analysis performed in the smaller dimensional space. If the

projection vectors are denoted ,. p and if 0 - [41,...,4], then

the mapping to RP is defined by zj 1 *Tzip J-l, ... ,k.

In order to get the best separation in the projection space it is

appropriate to use certain optimization criteria. The total scatter of

a set of vectors (z , ... , zk) in Rn having mean m is

total scatter- l Izj - m[2.

J-1

Let Y- (z1 - 2 .... zk - mJ, in terms of which

total scatter - trace(ST),
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where S T - YYT. The matrix ST is called the total scatter matrix.

After performing the projection into a p-dimensional space (p is

not a priori c - 1), the reduced total scatter becomes

p T

reduced total scatter - trace(OTYYTO) - (YYT •T
i-l i-l

There are two other scatter matrices of interest to us, the

within-class scatter matrix Sw and the between-class scatter matrix SB.

The matrix S w is defined by

S - S +...+Sw wi wc

where for each i-l .... c, Swi is the total scatter matrix for class i

TT

alone. If Xi is the adjusted data matrix for class i, then Sw -mx .

Letting X-(X, .... ,Xci, we have Sw - XX The matrix SB is defined by

S B "iki(mi-,,) (,iM)T"

i-l

Define

k

c

where I- [,.,T and - [...,0]T. Let M - [m -u,.... mc-m]. It

is relatively easy to see that

Y-X+MET,
c
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T T
B c c

S - SB÷+S, and

YE - METE.c

An important tool in our analysis is the singular value

decomposition (SVD) of the matrix Y [6,10]. The form of this

decomposition that we use is written as

where in terms of the rank r of Y,

U is n x r and has orthonormal columns,

Z - diag(al,... ,Cr), where a 1 > Or >0 are the nonzero singular

values, and

V is k x r and has orthonormal columns.

Under the assumption that Z has full rank, r - min(n,k-l).

The generalized inverse of Y [6,10], denoted Yt, is given by

yt - E.lUT

The criterion we impose is to maximize the reduced total scatter

T ST# subject to the constraints that # Tw 1  - p.
i-l

The constrainca say that the projections of the within-class scatter in

each coordinate are bounded by one. Since ST - SB+Sw,
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p P p
sTS i - T SB i + T Sw~i

i-i i-i i-i

p
- iSB + p.

i-B.

Thus an equivalent formulation of the problem is to maximize the
reduced

between-class scatter 01 SBO subJect to the same constraints. This

i-1

is the Fisher linear discriminant problem [2,3].

The Lagrange function for the Fisher problem is

F(Oit .... 0 p4SlCOT p' *'"Mp) "( T -1)].
i-I.

Setting Grad 4(F)-O gives

S Boi-iswoi, i-I .... (*)

which is a generalized eigensystem.

The analysis splits into two cases depending on the rank of X,

which is min(n,k-c):

i) the overdetermined case (which we take to include the exactly
determined case). in which k-c> n and

ii) the underdetermined case, in which k-c<n.

The overdetermined case is the one that has received wide attention

and is best understood. In this case the rank of S, is n, which implies

that the generalized eigensystem (*) is equivalent (analytically, but

not for computational purposes) to the ordinary eigensystem

S'1s ~i-AOit i-I,...,p. The matrix S3 has rank c-1, from which it
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follows that the appropriate value of p, the dimension of the reduced

space, is c-l.

It is inadvisable to compute the scatter matrices SB and Sw as

steps in solving the eigensystem (*). The computation of S w- XXT, in

particular, can be unstable and even if computed exactly, its condition

number x(XX T) can be large since X(XXT) - (X)2. This can result in

large relative output errors when solving the generalized eigensystem.

A stable computation of solutions of (*), or equivalently of

(McET ) ET( T ) T0 iXXT il

can be carried out using one of the recent treatmentq of the generalized

singular value decomposition (8,9,11] However., these methods do not take

advantage of the special structure of the Fisher problem, as our methods

do, and are not particularly amenable to updating.

The following theorem is the key to our proposed methods. It can

be interpreted as saying that we can solve the Fisher problem by mapping

as best possible in the least squares sense all the vectors in a given

class onto a certain vector in the projection space. It also describes

how to find these critical vectors.

Theorem 1. Let Oil .... Pc-1 be the projection vectors for the

overdetermined case. Then for each i-I.... c-l, there exists a vector

xi e Rc such that 0 " ytTEXi" Moreover, xi .... Oxc.1 are the

aigenvectors of the c x c generalized eigensystem ET VV TEx - AE TEx that

Tare different from x - [1... 1]

(The proof of this and other theorems in our development may be

seen in the full paper, which is included in the appendix.)

Theorem 2. If c-2 in the previous theorem so that there is just one

xi (call it x), then up to scalar multiples it can be assumed to be

given by x-(-k 2k)T.
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The underdetermined case is characterized by the condition that Sw

has rank less than n, or equivalently, that k<n+c. In this situation

every complex number is a generalized eigenvalue for (11) corresponding

Tto the generalized eigenvector *-[l,....l]

However, there is a different criterion that is appropriate for the

underdetermined case and for which there is a solution to the resulting

optimization problem [1]. The new criterion is to maximize the reduced

p

total scatter 0 T subject to ,TSwoi-O. OT~ -l'i-I.... p.total scater •iST,
i- T

Theorem 3. In the underdetermined case, the problem of maximizing

the reduced total scatter subject to the constraints T swo -1 is
iwi

equivalent to

1) solving the generalized elgensystem

(ET E)xi-AiA AT , i-l,. ...

where A-E'lVTE and A, ... Ac.1 are nonzero,

2) setting i-(yt)TExi.

3) normalizing 01 i-l,...,c-l.

The conclusion of Theorem 2, that up to constant multiples,

x-(-k 2)T , also holds for the underdetermined case.

Theorem 4. Let 0 be the output from the algorithm for the

underdeterained problem. Then 0 has orthogonal columns.

For a faster algorithm in the overdetermined case, at the possible

expense of losing some stability in the nearly rank deficient case, it

is better to use the Q-R factorization of YT as a tool. It is also the

preferred method if updating the projection vectors is anticipated. In

the overdatermined case, y is a kxn matrix with k>(n+c) and rank(Y T)-n.

The Q-R factorization produces a kxn factor Q having orthonormal columns
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and an nxn nonsingular upper triangular factor R for which YT -QR.

Theorem 5. The projection vectors for the overdetermined case can

be calculated from 0i-YtTExj, i-l,....c-l, where x ..... Xc.1 satisfy

MTytTEX -A x
c i i i

for nonzero scalars Al. A... .

Algorithm 1. SVD version. Overdetermined and underdetermined cases.

1) Calculate Y.

2) Calculate the SVD(Y) - UZV.

3) If the problem is overdetermined calculate A - vTE. If

underdetermined, calculate A - E-VTE.

4) Calculate the right singular vectors corresponding to the nonzero

singular values of AG1 , where G - ( (- diag(F1,.....c)). Let

# be the cx(c-l) matrix whose columns are these vectors.

5) Calculate X-G' 1.

6) If the problem is overdetermined, calculate O-U' 1AX. If

underdetermined, calculate O-UAX.

7) Normalize 4,i-i... ,c-l, if desired.

The main computational load in this algorithm is step 2, the

singular value decomposition, which requires about 7kn2 + (ll/3)k3 flops

in the overdetermined case.

Soecial note for the case c-2.

If c-2, omit steps 3, 4, and 5, for in this case there is just one

xi (namely xl) and up to scalar multiples, it can be taken to be

X1-(-k 2k 1 )T
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Alzorithm 2. O-k version, Overdetermined case only.

1) Calculate Y.

2) Calculate the Q-R factorization YT-QR, where Q is axn and has

orthonormal columns, R is nxn, upper triangular, and nonsingular.

3) Calculate F-[F1 , ... IFc ] by

a) finding bj-QTEj, J-1,...,c, where E - (E1 .... Ec], and

b) solving RF-B(-[b 1 1 ... 9be]) for F.

4) Calculate A-HTF.
c

5) Calculate the eigenvectors x ..... Oxc1 of A corresponding to

nonzero eigenvalues.

6) Calculate 4J-Fxj, J-1....c-l.

7) Normalize 4*, i-l,....c-l, if desired.

The main computational load in this algorithm is step 2, the Q-R

factorization of YT. It requires about n 2 (k-n/3) flops if done by

Householder transformations.

Special note for the case c-2.

If c-2, omit steps 4 and 5, for in this case there is just one x

T(namely xl) and up to scalar multiples, it is given by xl-(-k)2 k1 )

It may be desirable to append or delete a class of data vectors to

the liniar discriminant problem after the original calculations have

been done and to quickly update the projection vectors. Techniques have

been known for some years for updating a Q-R factorization (4,61 and we

have drawn on these methods for updating the projections vectors. The

process of updating a singular value decomposition is not as easy and

hence we have restricted attention to updating in the overdetermined
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case in which the Q-R factorization is used (Algorithm 2). Our

presentation concludes with an analysis of the problem of appending a

new data class. The dominant term in an estimate for the computational

load for updating is n2 kc+l flops, where k c+ is the number of vectors

in the appended class. This compares favorably with the estimated

n 2 (k+kc+l-n/3) flops estimated for starting over when new data is

appended.
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6.0 Rule-Based Automatic Target Recognition

The majority of automatic target recognizers undertaking field

evaluation today owe their internal structure to a classical statistical

approach. Although the dimensionality of the variable parameters that

each system is subject to is large, little use is made of context and

ancillary information such as time of day, sensor, weather conditions

and intelligence data. Such ancillary data can be profitably used to

alleviate the algorithmic burden of accommodating the extreme ranges of

conditions.

Presented in this section are two novel approaches to include

ancillary knowledge into the control structure of an automatic target

recognizer (ATR). Automatic target recognition involves the

determination of objects in natural scenes in different weather

conditions and in the presence of both active and passive

countermeasures and battlefield contaminants. This high degree of

variability requires a flexible system control capable of adapting as

the conditions change. The desired flexibility can be achieved with a

rule-based system in which the knowledge of the effects of scene content

and ancillary information on algorithm choices and parameter values can

be modelled and manipulated. This on-going effort is an outgrowth of

earlier activity in automatic target recognition research. New

theoretical and practical tools were developed for the analysis of

military scenes, with emphasis placed on methods to deal with

uncertainties associated with such imagery (1-5]. The ongoing effort

involves incorporating the knowledge and experience gained in working
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with such imagery and with modelling uncertainties into a rule-based

structure for the detection and recognition of objects in military

scenes.

A major focus of the research as reported here for incorporating AI

into automatic target recognition has been the use of context to cue the

possible likelihood of a target in a given area of the scene [6]-[111].

6.1 Numereical Uncertainty Propagation System

The approach reported on here was borne out of several years of

independent research in image processing, image analysis, image

understanding and artificial intelligence techniques. Because of the

large variability in automatic target recognition, no single set of

algorithms, no matter how adaptive they could be made, would give

consistent, reliable results when subject to the full variety of target

conditions and scenario conditions. Yet, it was realized that by having

knowledge of the conditions (that could be measured by simple metrics)

that an expert analyst could select an appropriate algorithm which could

yield an optimal performance.

The known tool for implementing this expert corporate knowledge is

a rule based system. It is desired that such a system indicate when it

was being subjected to a situation for which there was no supporting

research. It is desired that the system be structured so that it

identified circumstances which were outside its experience. Finally, it

is not necessary to have a set structure for finding targets and target

types but to let the data trigger the rules for finding "potential

objects*. Once a potential object has been found the system carries
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multiple hypotheses as regard to the type of the object using a local

Dempster-Shafer approach to eventually determine the target type.

Classical statistical image processing generally follows the stages

of enhancement, prescreening, segmentation and feature extraction

followed by detection, recognition and/or identification. Within each

stage, the image analysts developed a whole series of algorithms which

themselves had adaptive coefficients, or thresholds [12, 131. Indeed,

some of these algorithms themselves included simple rule-based

algorithms.

The systems usually utilize deterministic and/or statistical rules

for classification. Little use is made of context and ancillary

information such as time of day, season, weather conditions and

"intelligence" data. The conventional approach utilizes a training data

set as a basis to select processing algorithms, select parameter values,

select feature sets and to build decision rules. If an actual situation

fell outside of the training set, such a system would make a decision

with a relatively high, and likely unacceptable, error probability.

In addition to developing individual algorithms, measures for

evaluating the performance of an algorithm under various circumstances

were also developed. These *tractability" fundamental parameters are i)

size, ii) contrast, iUi) clutter, iv) motion, v) shape and vi) color.

The real worth of this work was that an image understanding analyst can

quantify image tractability as a function of image metrics (14,15]. A

set of algorithms could, in general, be selected and their coefficients

controlled to give very reasonable performance provided that the set of

test images to which the system was subjected was confined to small

excursions of the image conditions.
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Combining knowledge about image processing with that about scene

understanding became the goal of the artificial intelligence task. At

an early stage, the knowledge was classified under the general headings

of sensor, scene, and objective. The impact of the sensor is self

evident. The significance of the scene can be illustrated by comparing

the difficulty of finding a man made object in a rural scene as distinct

from an urban scene.

The target condition itself plays a dominant role. Apart form its

size, its signature against its background is one of the most dominant

video features. Clearly, a well camouflaged target will present little

or no contrast to the ATR which makes the basic task of initial target

detection difficult (15]. Conversely a sharply contrasted target is

very easy to locate. The weather conditions greatly contribute to this

received image contrast. Rain, fog, and BIC (battlefield induced

contaminants) all contribute to image degradation.

The final impact upon an ATR structure is the mission objective.

In the first level of classification under the objective category are

detection, recognition and identification. If all that is required is

detection then essentially the ATR is faced with a two class problem of

target or non-target. Once the target category has been designated as a

military set (tanks, APCs, trucks, helicopters, etc.) then every object

not recognized as one of that target set is a non-target. If

recognition is the requirement, then the ATR has to accommodate a

multiclass structure and look for a set of features which can

discriminate between those classes selected. Identification of a

particular object subclass leads to yet a more tasking problem In

addition to the baseline objective of detection, recognition and
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identification, the target type and its priority impact the algorithms

chosen. For Ground order of battle, targets of opportunity, such as

tanks, etc., tend to proliferate in the battlefield. An ATR carried on

a high valued asset such as a fighter aircraft, whose objective is to

find such targets of opportunity should be optimized to have a very low

false alarm rate at the expense of probability of detection. On the

other extreme are high value targets such as a mobile nuclear missile

site for which one should be prepared to accept a higher probability of

detection at the expense of a higher false alarm. Again, ancillary data

on the target can greatly ease the target detection and recognition

problem. For instance the majority of high value targets such as

bridges, POL dumps, etc. have known physical locations. The linking of

the knowledge concerning the location of the sensor platform

(-aircraft-) and look angle of the sensor can indicate to the ATR that

the object should be there geographically. The ATR in this case has

much of the responsibility of finding the target removed by the

inclusion of inertial navigation data and the knowledge that the target

is at that location.

This knowledge was incorporated into an ATh control structure

through the use of a rule-based network, or tree, to determine i) the

choice of processing algorithms, ii) the order of application of these

algorithms, iii) the parameters utilized in these techniques and iv)

provide an overall confidence level associated with the final decision.

Such a rule-based structure offers the following advantages in ATR

applications:
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1) efficient use of knowledge directly concerned with relationships of

conditions to conclusions or deductions, such as the influence of

ancillary factors on selecting features or the image sensor;

2) isolation of (IF... THEN rules) for feature selection from those for

selecting a segmentation algorithm;

3) ability to handle uncertainties in terms of probabilities, belief

functions or possibility distributions;

4) ability to perform specific goal directed hypothesis testing, for

example, different approaches are necessary to decide if an object

is a tank, or more generally a target.

Description of the Process.

Early image analysis research had followed a sequential approach.

It was found that one could perform considerable enhancement either

globally or locally, which would give 'pleasing" results to a human

observer (16]. However, such preprocessing did little in terms of

improving an ATRs overall performance unless it was concerned with

removing an artifact generated by the sensor.

Similarly, many of the common prescreeners were studied and tested

using different sensors against targets in different scenarios (17].

What was learned was that, depending on the sensor and the scenario, not

only is there an appropriate choice of prescreener but there is also an

optimal choice of that prescreener's coefficient [17-181.

Therefore it became evident that one could define a knowledge base

structure such that if the sensor was known, and the scene conditions

measured, the most appropriate choice of preprocessor and prescreener

could then be selected.
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The next stage became somewhat more complex. Research had been

performed on segmentors (14], features extraction [17] and the methods

for combining features [17, 18] to determine the detection, recognition

or identification of objects in military scenes. In an effort to

optimize the segmentation process it was realized that the measure of

performance of the segmentor was related to the consistency of the

feature it produced for the feature extraction stage (14]. The value of

the feature itself depended upon the manner in which that feature

separated the chosen class from the other classes. Through considerable

testing of a number segmentors (around 20) in conjunction with over 150

features there evolved a consistent set of appropriate feature

extractor-segmentor pairs that gave reliable results [14, 17].

The appropriate set of features themselves was predicted upon the

class of targets required (i.e. the objective). For each classification

problem encountered, target vs. non-target, tank vs. APC, helicopter vs.

false alarm, etc., the effects of different collections of features and

pattern recognizers on a large data base of military objects were

studied. The classifiers included Bayes decision rule, crisp and fuzzy

K nearest neighbor and perceptron schemes, and a Dempster-Shafer

evidence combination process [4, 5, 18-21]. Then, rules were developed

which paired the decision making procedure with the appropriate feature

sets for each subproblem. This in turn demanded an appropriate choice

of feature-extractor methodology.

The work in determining the optimal classifiers was based upon

extracting the features from the training data into known ranges of

value. A dilemma was that when features were extracted from test data

that did not correspond to the range of data extracted from the training
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set, then any decision derived from that data is unsubstantiated. To

accommodate this, the ATR was allowed to address other features which

might fall into a range that had been observed from the training data.

Should the ATR not find a feature that corresponds to the test data

range, it returns an answer of "outside our experience."

As an added robustness feature, multiple hypotheses as to the

identity of the potential target were carried. For instance, in

determining whether a detection from the prescreener is a target

(defined as a tank or an APC) or a false alarm, the possibility that it

was a target or a non-target, was examined, or that it was an APC or a

non-APC, or that it was a tank or non-tank. Whatever the objective of

system at a particular time, the first piece of evidence acquired is a

detector decision (target vs. non-target) using a Bayes Rule with 8

features chosen from the feature set. The rule was trained on

approximately 900 targets and around 100 false alarms. The decision

made at this stage (together with the Bayes confidence) is used to

tailor the resulting evidence acquisition.

From this point on, different pattern recognition problems are

solved, and the results combined in a voting scheme individualized to

the overall objective of the system. For example, if the objective were

to distinguish tanks, APC's and false alarms, then the following

subprobleow vere initiated to provide the evidence for the final vote:

tank vs. non-tank, APC vs. non-APCs, targets vs. false alarms, APCs vs.

false alarms, and tanks vs. false alarms. In each of these processes,

four features chosen from the feature set as being good separators of

the training data were used. The evidence combination in each decision

process was based on Dempster-Shafer belief theory [21]. For each
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feature, a simple support function was generated separately for each

hypothesisi It, is in this support function that information "outside

our experience" can be ignored. In fact, the basic probability

assignment for the hypothesis under consideration was calculated by a

x-function centered on the interval of the feature axis occupied by the

training data. Hence, if this feature value for a test object does not

fall into the range of our training data, a vacuous support function is

generated. These support functions are combined using Dempster's Rule

into a belief function related to this feature. These belief functions

are then combined for all features to produce overall beliefs for the

hypotheses under consideration. A decision is made to favor the

hypothesis with greatest belief. This structure was chosen so that

spurious values of a few features caused by noise, partial occlusion,

etc. will not overly bias the decision, as may happen in a Bayes

technique.

There are several rules in the system which combine the decisions

generated by those subproblems into a final classification. These rules

depend upon the overall objective, and the choice and results of the

various subtests. Intuitively, if there is a clear winner with high

enough belief, then that hypothesis is chosen. However, there are

tie-breaking rules which reflect mission objectives; for example, if the

object could be either a tank or an APC with about equal support, then

call it a tank. There are even rules which override a majority if the

evidence from a high priority rule is strong enough. An instance of

this type of rule occurs where the object is thought to be a target from

Bayes rule, and a tank in the tank vs. non-tank rule (with high enough

belief) but is labeled a false alarm by two or three rules which allow
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false alarm as a hypothesis. In this case, the majority is overridden

by the confidence in the target and tank decisions.

Implementation and Results

The rule based system control strategy contained both forward

chaining and backward chaining paradigms. The forward chaining approach

tends to follow the traditional sequence of steps in image analysis,

while the backward chaining mode allows specific tailoring of the system

structure for hypothesis generation and testing.

The system was implemented in an expert system shell for rapid

prototyping with image inputs from the Computer Vision Laboratory

equipment at UMC. The basic prototype system uses 212 rules.

The object recognition portion of the rule base was tested on a

sequence of 100 frames containing two tanks and an APC during which the

APC moves behind one of the tanks and into and out of a ravine. This

sequence of images is considerably different from the data used to

"train" the rule base. Using the output of the first part of the rule

base, the images were prescreened and segmented and the chosen features

were extracted. The rule base was executed using different objectives

and representative results are displayed in Table 1. The format of the

table gives the actual object under consideration, the system objective,

the result of the target detection stage and the recognition evidence,

followed by the final classification. The local Shafer belief values

for individual processes have been suppressed and here only the partial

determination are reported. It can be seen from the table that

different system objectives give rise to different recognition processes

and interpretation rules. Several instances of system behavior can be
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highlighted. There are circumstances when this rule base will not make

a partial decision. This occurred when the results of the individual

recognition procedures conflicted with the system objective. This can

be seen in tests (4), (5), (8) and (10) in Table 1. In each case, an

Undecided (Nil) response was generated, and the search for evidence

proceeded. With the object labeled APC 1 (8), in the APC vs. tank

scenario, the tests tank vs. non-tank and APC vs. false alarm indicate

that the result is false alarm, contrary to the objective. The system

recorded a Nil decision from the evidence, and proceeded. When it

encountered the same confusion in the next set of tests, it produced a

final classification of Undecided. (This APC was partially occluded by

the ravine). However in the APC vs. false alarm case, a decision was

made quickly (This APC's features resembled those of ground clutter due

to its occlusion). Now APC 4 corresponds to the APC after it had become

completely visible and was correctly classified in all scenarios.

Test (6) from Table 1 involved a tank in a three class recognition

problem In this case, since false alarm was a viable answer, the

inconsistency described above was not present. Hence, there were two

votes for false alarm in this case, countered by the one vote for tank.

However, the fact that the object was called a target by the detection

algorithm (Bayes Decision Rule), and a tank in the tank vs. APC process,

together with "high" belief in tank and "low" belief in false alarm, the

system correctly identified the object. This is an example of a

non-majority decision rule consistent with a mission plan.

The system described above represented the initial prototype ATR

and is denoted as the "polling* system. Three enhancements were made to

this system during the latter stages of the grant. The calculation of
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the simple support functions was changed from a simple x-function to the

fuzzy integral, as described in section 3.2. The same basic voting and

polling structure was used. A comparison of these two systems can be

found in Table 2. As can be seen, the fuzzy integral provided a better

evaluation of feature evidence resulting in fewer misclassifications.

Then for the three class problem (Tank vs APC vs False Alarm), the

control structure of the system was modified. Instead of voting on the

various subproblems, each such rule produced a belief function over the

frame of hypotheses. These belief functions were then combined globally

using Dempster's Rule to obtain a final classification (hypothesis with

largest belief). The results for this approach using x-functions and

the fuzzy intrgral within each rule are also displayed in Table 2. The

w-functions proved to be too simplistic of an approach. When the

polling strategy was removed, the overall classifications went down.

However, better results were obtained from the fuzzy integral in this

new structure.
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Table 1. Sample Output*

Actual System Final
Object Objective Evidence Classification

Detection Recognition
((process)/result]

Tank 11
(1) T vs FA Target (T vs A)/T

(T vs NT)/T Tank

(2) T vs A Target (T vs A)/T
(T vs NT)/T
(A vs NA)/NA
(T vs FA)/T Tank

(3) T vs A vs FA Target (T vs A)/T
(T vs NT)/T
(A vs NA)/NA
(T vs FA)/T Tank

Tank 13
(4) T vs A Target (T vs A)/T

(T vs NT)/T
(A vs NA)/NA

Nil
(T vs FA)/FA Tank

Tank 22
(5) T vs A Target (T vs A)/T

(T vs NT)/NT
Nil

(A vs FA)/FA
(A vs NA)/NA

Nil
(T vs FA)/FA Tank

(6) T vs A vs FA Target (T vs A)/T
(T vs NT)/NT

FA
(A vs FA)/FA
(A vs NA)/NA.

FA
(T vs FA)/FA Tank

APC 1
(7) A va FA False (A vs NA)/NA False

Alarm Alarm
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(Table I continued)

(8) A vs T False (T vs NT)/NT
Alarm Nil

(A vs FA)/FA
(A vs NA)/NA

Nil
(T vs FA)/FA Undecided

APC 4
(9) A vs FA Target (T vs A)/A

(A vs NA)/A APC

(10 T vs A Target (T vs A)/A
(T vs NT)/NT

Nil
(A vs FA)/FA
(A vs NA)/A APC

Clutter
(11 T vs A vs FA False (T vs NT)/NT

Alarm (A vs FA)/FA
(A vs NA)/NA False
(T vs FA)/FA Alarm
(A vs FA)/FA

* Abbreviations: T - Tank

NT - Not Tank
A - APC
NA - Non APC
FA - False Alarm

Table 2

Confusion Matrices for AhR Teoting Results *

a) Polling using *-functions b) Polling using Fuzzy Integral

Tank APC FA Tank APC FA

Tank 166 10 0 Tank 139 37 0

APC 20 10 36 APC 15 47 4

FA 0 0 13 0 0 13
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(Table 2 continued)

c) D-S using i-functions d) D-S using Fuzzy Integral

Tank APC FA Tank APC FA

Tank 148 9 19 Tank 142 34 0

APC 20 15 31 APC 13 53 0

FA 0 0 13 0 0 13

* Polling refers to local Dempster's Rule with a voting strategy.
D-S refers to global use of Dempster's Rule across rules.

6.2 Fuzzy Logic Automatic Target Recognition System

We now describe a fuzzy rule-based production system which

incorporates the complexity and uncertainty into the model and provides

a natural language interface to both midlevel and the AI high-level

vision subsystems. In effect we are relaxing the desire for perceived

precision as found in numeric models in an effort to increase the

significance or believability of the results. Understanding the

contextual content of the image is an important feature of this

rule-based system. The extension of this contextual knowledge to the

fuzzy logic system is used to resolve conflicting interpretations or to

refine initial analysis.

We have applied the fuzzy rule-based production system described in

Section 3.1 to two areas of automatic target detection and recognition.

The application involved the use of temporal sequences of

forward-looking infrared (FLIR) and TV images. The system consists of

three distinct processing phases: (1) prescreening, (2) scene

recognition, (3) contextual knowledge-based validation. Each of these

processes is described in detail in the following sections along with
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some sample rules which highlight the various concepts. A full listing

of the rules used in this experiment can be found in the appendix.

Prescreeninz

The first step of an automatic target recognizer is to prescreen the

individual image frames by either a series of size-contrast or spoke

filters to find regions containing possible objects of interest.

Extracting these regions involves an exhaustive search, that is, the

system needs to try many different prescreened windows. For our

automatic target recognizer to be able to do the search in a short

amount of time, some sort of task-dependent knowledge was introduced.

For example, a typical rule is

(RULE 1) If:

the range is IM

Then:

the prescreened window size is small.

The values of the linguistic variables for primary terms were modelled

by trapezoidal numbers over the specified domains given by

0, v<a
1

(v-a), asvab
b-a

trap(v;a,b,c.d) - 1, b~svsc (1)

1

(v-d), csvSd
c-d

0. vSd
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The hedges v and moreories are functional models of the primary

terms as defined in (20]. For example, the values long and small were

represented by

long - trap(u;700,900,1000,1000), (2)

small - trap(v;l,l,5,15),

where u is measured in meters and v is an integer value representing the

size of the window.

In this experiment we computed the linguistic values for the range

at any distance (in meters), denoted by D, as follows. Since there is a

considerable uncertainty in the distance of the object to the sensor

(because of the approximation of the range), the uncertainty inherent in

this value for the data set available was modelled by trapezoidal number

given by

range - trap(u;ul,u2,u3,u4), (3)

where

ul-m=ax(O,D-200),

u2-imax(O,D-l0O),

u3-D+100,

u4-D+200.

This value is then matched to the nearest (in Hamming distance)

linguistic term in the database and the result is used as the input to

the system.
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One interesting note in the resulting window size obtained by the

above rule is that an AI routine can be used to generate window sizes

for the prescreener using right and left a-level set endpoints (rounded

up to the nearest integer). For example, if the range is long then by

using the above definition for the linguistic value small, the right

a-level set endpoints generated at intervals of 0.2 from 0 to 1 are 15,

13, 11, 9, 7, and 5, and the left a-level set endpoints are all 1.

These level set endpoints can be then translated into window sizes

15x15, 13x13, llxll, 9x9, 7x7, and 5x5, and lxl, respectively. On the

other hand, if the range is more or less long, then the value of the

linguistic window size will be m2.e._or-less small. By generating the

level set endpoints as before and after translation the respective

window sizes are 15x15, 15x15 (rounded up), 14xl4, 12x12, 9x9, 5x5, and

lxl. It can be seen that the latter window sizes are at least as large

as the former ones. The AI routine can then make a decision about which

one of the hits are likely to be the target based on the belief used in

the value of a. i.e., the higher the a, the higher the confidence.

Scene Recognition

In scene recognition, for a particular scenario, we primarily worked

on two types of objects: man-made and natural. In this experiment,

man-made objects consisted of armored personal carrier (APC), and TANK.

Natural regions consisted of ROAD, SKY, FIELD, TREE, etc. We modeled the

values for a linguistic variable confidence by fuzzy sets over a common

domain [0,1] which are set up to convey the meaning of natural language

expressions. For example, we modeled our primary terms high, medium, and

low by the following:
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low - crap(u;O,.l,.2),

medium - trap(u;.4,.45,.55,.6), (4)

high - trap(u;.7,.9,l,l).

The hedges yea and mor.or.1Au are the appropriate functional models

of the primary terms.

In scene recognition, features were extracted from the regions of

interest which included grey-level statistics, moment invariants, and

texture features values from the original and segmented windows. A fuzzy

pattern recognition algoritdia such as fuzzy k-nearest-neighbor scheme

(17] was used to produce the final class membership for each region

based on the memberships of the training data and the distance (in

feature space) of the sample to the training data. Given a membership m

for a particular region, the linguistic confidence inherent in this

value, denoted by CONF, is then modelled by trapezoidal number given by

CONF - trap(u;ul,u2,u3,u4), (5)

where

ul - max(O'm-.l0),

u2 - max(O,m-.05),

u0 - nin(1,m+.05),

u4 - min(l,m+.10).

This value is then matched to the nearest (in the sense of Hamming

distance) linguistic term in the database and the result is usad as the
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input to the system. For example, if the objective is to distinguish

tanks, APCs, and false alarms, then the- following subproblems are

initiated to provide evidence for each pattern: target vs. false alarm,

tank vs. APC, and tank vs. APC vs. false alarm. In each of these

processes appropriate feature sets are chosen which can distinguish one

object pattern from another.

There are several rules in the system which combine the decisions

generated by the above subproblems into a final classification. These

rules depend upon the results of the various subsets. For example, a

typical rule for the false alarm confidence is

(RULE 20) If:

false alarm confidence is more or less high

(in target vs. false alarm)

and false alarm confidence is more or less hig

(in tank vs. APC vs. false alarm)

Then:

false alarm confidence is more or less hifh.

In effect, we are relaxing the desire for perceived precision as found

in numeric models in an effort to increase the significance and

believability of the results. As an example, suppose that the false

alarm confidences are high in both cases. Then the final confidence will

be high. On the other hand, if the confidences are mole o n1 high and

low then the final confidence will be unknown or undecided. That is, we

cannot make any decision about the false alarm confidence based on the

available information because of conflicting evidence obtained by the

different subproblems. By using similar rules we can also obtain the
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tank and APC confidences. Note that if there is no clear winner, i,e.,

the resultant confidences for APC, tank, and false alarm are all

umknown, then we will use a tie-breaking rule which reflects mission

objectives. That is, we use the results of subproblem2 (tank vs. APC) as

the final classification results for the tank and APC.

In the multisensor target recognition problem we combine evidence

from several sensors to arrive at overall confidence values by fuzzy

weighted averaging as discussed in [5]. If Vi and Ci denote the

reliability and the confidence of the region by the ith sensor, then the

overall confidence value for n sensors is given by

n
E Wi * Ci

i-lC- , (6)
n
E W

i-l

where each of the quantities is a fuzzy set.

One artifact of linguistic averaging is that the final fuzzy set has

a large 'tail", that is, the function rises and peaks in the original

interval but trails off slower over a much larger interval. Because of

this effect we perform the linguistic approximation for C by finding the

Haming distance between C and the linguistic terms in the interval

[0,1] The term which provides the minimum of these calculations is

chosen as the best match.

Contextual Knowledge-Based Validation

The scene has been passed through various stages of analysis when it
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reaches this step in the process. Objects that have been previously

stored in the reference knowledge base have been accounted for, and

changes in these objects have been noticed and recorded. In some

applications, this is the final step in the processing. However, if the

intention is to further analyze the scene, a contextual-driven automatic

object recognizer can now be used. For example, if weather conditions or

time of day change, the rule base should incorporate these changes by

adjusting the reliabilities of TV and FLIR sensors. A typical rule is

(RULE 5) If:

light intensity is ]2y

Then:

the reliability if TV sensor is 12m

and the reliability of FLIR sensor is hig.

In the area of recognition of military vehicles, scene rules are used

to further interpret the information provided by scene recognition. In

an image sequence, object classification confidences can be enhanced

through utilization of positive evidence provided by the scene context.

A typical scene rule is

(RULE 30) If:

motion detected with more or less hih

confidence

Then:

raise the target confidence

and lower the false alarm confidence.
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In this experiment we computed the linguistic values for consistent

motion in a horizontal direction as follows. Since the displacement

depends on the sensor viewing angle and the distance of the object to

the sensor, the center location and the prescreened window size were

used to extimate the horizontal displacement between frames. Thus we

computed the membership in "consistent motion" by

Am(d) - S(d;O,wx,2wx), (7)

where

0, u<a

22[ (u-a)/(c-a)] a<_u:b
S(u;alb,c) - 2 (8)

1, u>C

and wx and d denote the window size in horizontal direction (in the

current frame) and the displacement of center points (in pixels),

respectively. This membership value is then mapped to the linguistic

confidence parameter as discussed in the above section.

The method to raise or to lower the linguistic confidence based on

context is performed by first shifting the linguistic value to the right

(toward 1) or to the left (toward 0), respectively, and then matching

the result to the nearest linguistic term in the database. The amount of

shifting is proportional to the power of truth value true which, in

turn, depends on the degree of match between the input and the

antecedent. In this experiment we computed the amount of shifting

subjectively by

SHIFT - 0.09 * n,

where n denotes the power of truth value true generated by matching the
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input and antecedent in rule 30. As an example, suppose that the target

and false alarm confidences are both medium as defined in equation (4).

If the confidence of the detected motion is more or less high, then by

invoking rule 30, n will be equal 1, and as a consequence, SHIFT will be

equal 0.09. Thus the target and false alarm confidences are given by

target confidence - trap(u;.49,.54,.64,.69),

false alarm confidence - trap(u; .31, .36, .46, .51).

These confidence values are then matched to the closest (in the sense of

Hamming distance) linguistic term as discussed before, producing the new

confidence values for the target and false alarm.

We need to point out that the number of linguistic terms in the term

set is a function of the application. In a general language

understanding system this problem poses an effective infinite rule and

context regression (5]. However, in a limited application, this

difficulty is tractable. Much depends on the expectation of the user,

i.e., how expressive should the results be to satisfy the user's needs

in the particular well-defined environment. The terms should not only

be expressive, but the meanings should be well-understood by those

employing the system. For example, an expression such as "norh

high to somewhat high" may actually increase the confusion of the

situation. In this experiment the membership distributions of the

linguistic values were set up subjectively to convey the meaning of

natural language expressions. The values of linguistic variable

confidence used in this experiment were (very low, low, More or less

low, medium, more.orljess medium, moerless high, high, vey high).

Implementation and Results

The fuzzy rule-based system has been implemented in the Expert
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System Development Package (EXSYS) and modified by FORTRAN programs to

perform fuzzy logic. The rule-based control strategy contains a forward

chaining paradigm. Our prototype system uses 50 rules.

We have applied the fuzzy rule-based production system to two areas

of automatic target detection and recognition. The first application

involved the use of temporal sequences of FLIR images, whereas the

second one concentrated the combination of evidence from both FUR and

TV images.

In the temporal case, the rule base was first trained on

approximately 900 targets (tanks and APCs) and around 100 false alarms.

It was then tested on a sequence of 100 frames containing two tanks and

an APC during which the APC moves behind one of the tanks and into and

out of a ravine. This sequence of images is considerably different from

the data used to "train" the rule base. The images were prescreened,

segmented, and the chosen features were extracted. The fuzzy k-nearest

neighbor algorithm was used to produce the final class membership for

test vectors based on the class memberships of the training data and

distances of the test vector to the training data. These memberships

were mapped to the linguistic confidence values as indicated. The rule

base was executed and representative results are shown in Table 3. The

format of the table gives the actual object under consideration, the

result of various subproblems, followed by the final classification. The

term unknown denotes an undecided response, that is, the rule base could

not make any decision based on the available information. In tests (1),

(2), and (3), the tank was classified with three different confidences

and the APC was classified unknown. However, in test (4), after invoking

the tie-breaking rule, the tank and APC were classified with vy high
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and very low confidences. In test (5), although the target confidence is

very low in the target vs. false alarm subproblem, the rule base

produced more or less high confidence for the both target and APC. Test

(6) is an interesting case where the APC is partially occluded by the

ravine. The rule base produced medim• and more or, lesi low confidences

for the APC and tank, respectively. Tests (7) and (9) are two cases

where the APC and false alarm are misclassified as a tank and an APC,

respectively. Note that for the purpose of comparison of our method to

the other schemes, target confidences were generated without

incorporating the evidence obtained by the motion. However, since the

APC moves, by invoking rule 30 the target confidences in tests (5) and

(6) are changed from moreorzes high and mdedum to high and more or

esUs high, respectively.

We compared our results to a rule-based system which uses

Dempster-Shafer belief theory. This is the best version of the system

described in Section 6.1. The comparison is displayed in Table 4.

Here, the strategy has been to selectively extract groups of four

features at a time and generate a set of confidences, which, in this

case, would be the basic probability masses associated with the

corresponding set of pattern choices. At every stage, these beliefs are

combined with the ones previously obtained to give a resultant set of

confidences which, after final combination, are used to make a decision

about the object patterns believed to exist in the image.

In order to compare our results to the above scheme, we assigned the

linguistic value more.or.e._i high as the threshold and labeled the

objects as being in the class with at least more or less high

confidence.
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It can be seen from Table 4 that our method performed better than

the belief theoretic counter part when thresholds are converted to crisp

partitions. The total number of misclassifications in our method is half

the number obtained by the other method. Note that even though some

false alarms were misclassified as an APC, none of the targets were

misclassified as false alarms. It is also important to consider the

priority that exists between the tank, APC, and false alarm in a

particular situation. That is, it is preferable in most situations to

call an APC a tank than to call a tank an APC. As can be seen from Table

4, in our method, none of the tanks was misclassified as an APC, whereas

32 tanks were misclassified as APCs by the Dempster-Shafer method.

Furthermore, the advantage of having linguistic confidence associated

with the object over the crisp decisions is that a human operator or an

AI routine can evaluate the input and reason about the scene. For

example, since the output of inference will be unknown when there are

conflicts between the pieces of evidence, this information can be used

to trigger more extensive tests on the objects.

In the second situation (multisensor), the rule base was tested on

two sequences of 15 frames each (FLIR and TV) and representative results

are shown in Table 5. The table gives the result of classification by

each sensor followed by the final classification. Since these sequences

were acquired at about 2:00 p.m. and, as a consequence, the light

intensity was high, the rule base assigned high and low reliabilities to

TV and FLIR sensors, respectively. In each case, the results obtained by

each sensor were combined using linguistic averaging to produce an

overall confidence in the object. It can be seen from Table 6 that the

system produced reasonable results for the objects tested. Note that
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since the reliabilities of the sensors are not equal, the sensor with

higher reliability (TV) will pull the final confidence towards the

confidence value associated with it. Table 6 summarizes the results

after labeling the objects as being in the class with at least more or

lJess high confidence. As atmospheric conditions, time of day, and

weather conditions change, the rule base can easily incorporate these

changes by adjusting the reliabilities of the sensors.
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Table 4. Confusion matrices for the fuzzy logic and
Dempster- Shafer methods

TANK APC FA TANK APC FA

TANK 176 0 0 TANK 142 34 0

APC 17 49 0 APC 13 53 0

FA 0 6 7 FA 0 0 13

Fuzzy Logic Dempster-Shafer
FA - false alarm
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Table 6. Confusion matrix for multisensor case

TANK APC FA

TANK 21 9 0

APC 5 10 0

FA 0 0 0

FA - false alarm
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7.0 Use of Context in Scene Analysis

Introduction

This section continues the discussion of uncertainty management

in a rule-based system for automatic target recognition. An efficient

rule-based structure should incorporate any known contextual or "a

priori" information relevant to a given scene. This information

pertains to situations that are exceptional or beyond the main

knowledge base. Because such information is sufficiently relevant, it

requires special attention to assure that it is incorporated into the

rule-based decision structure. Acquired contextual information is to

be used to readjust the confidences associated with the final set of

choices (1-6]. In general, context in a scene refers to special

information or knowledge pertaining to objects or regions in a scene

or the relationship of such objects or regions. The source of this

knowledge is external to the scene and this knowledge varies from

situation to situation. Examples include knowledge pertaining to the

number and type of objects in a scene and knowledge pertaining to

whether certain objects are found together or not found together.

Such specific knowledge is difficult to include in a strict rule-based

structure.

The construction and application of a knowledge base in a

rule-based system involves accounting for the most comon occurrences

or possibilities that arise in the problem domain of interest. Given

a knowledge base and appropriate reasoning, a rule-based decision

structure can be generated. This structure should process, evaluate

and utilize as much of the available information as possible in
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arriving at a "reasonable" conclusion or solution to a problem.

Context information which lies outside of the existing or commonly

assumed knowledge domain may not, in general, be easily incorporated

into the original knowledge base. Such information, when being

included in the decision-making process, could significantly influence

the final conclusions.

One way to handle this problem is to modify the existing

rule-based structure to accommodate or incorporate the new context

information or situation. This approach could be a tedious procedure,

depending on the uncertainty propagation scheme used and the rule

complexity or special meta-rules used. This problem would be

exaggerated if the uncertainties are propagated through a chain of

rules, perhaps over a significant length of the decision tree. This

would occur when, for example, the conclusion arrived at by firing a

particular rule is required to satisfy part of the IF proposition or

antecedent of a subsequent rule.

An alternate approach, rather than alter the original main body

of the rule-based structure, is to add on peripheral or context-based

rules that modify gn! uncertainty computations for the conclusion of

rules for which the contextual information is applicable. To

implement this, for every rule Rj, define a context factor,

CJ: [-1,11
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7.1 Context Factors

Based on previous discussion, the general form of a rule is given

by,

PThenj - f (PIfj, PRulej);

that is, confidence in the THEN part of a rule is a function of

confidence in the IF part of the rule and confidence in applying this

rule.

Suppose now that it is desired to effect PThenj by a third term

or parameter, CJ, the context factor associated with rule Rj. Let Cj

have the following properties:

A) CJ-O if no contextual information relevant to RJ exists

B) C >0 if relevant contextual information supports conclusion of

Rj.

C) C <0 if relevant contextual information negates or disagrees

with the conclusion of Rj.

Thus, tho computation of the modified certainty or conf dance in

the conclusion of RJ, PThenj, is expressed as,

PThenj - f'(Thenj. C j),

where f' is to satisfy the following properties:

A) P'Thenj - PThenj, if C -0 (1)

B) P'Thenj > PThenj, if Cj>0 (2)

C) P'Thenj < PThenJ, if C <0 (3)

-80-



I

D) P'Thenj - 1, if C -O or if PThenj - 1 (4)

E) P'Thenj - 0, if Cj--1 or if Pmenj - 0 (5)

F) For a given PThenj, P'Thenj should monotonically increase
with C

Relevant assumptions

a) PThenj - 1: absolute indorsement in the conclusion of Rj
b) PThenj - 0: absolute refutation or rejection of the

conclusion of Rj.
Thus,

PThenj, P'Thenj -[0.1] with C -6j-l,l]

Combining Context Factors

It is likely that more than one context rule is relevant to a

given rule, Rj, in the main rule base. The idea here is to first

combine two or more context factors to yield a context resultant

factor that is relevant to a given rule.

One approach which has been implemented, is that of sequential

combination. Consider a sequence of context factors which are

applicable to a given rule, Rj. First, combine the first two elements

of the sequence to generate an intermediate context factor, which is

then combined with the third element in the sequence to generate the

next intermediate context factor, and so on until every element in the

sequence has been combined so as to end up with a final (resultant)

context factor for rule Rj.

Let C {i-1 . ,3) be m context rules applicable to rule

R .F

Let C'kj - intermediate context factor generated by

combining the first k context rules or factors, (k-2....,m);
C' lJ - ClJ
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Consider a function g which combines two context factors C' kj and

C k+l,J to yield a resultant factor in the form,

C'k+l,j ' g(C'kj, Ck+l,j) (6)

The function g is to satisfy the following desired properties.

A) C' k+l,j -Ckj, If Ck+l,j 0 (7)

B) C'k+l,j - 1, If C'k+l,j - 1 or

If Ck+l,j - 1 (8)

C) C'k+l,j - -1, If C'kj - -1 r (9)
ifk+l,j -kj

D) C' k+l,j - 0, If ckj - -Ck+l,j, - cluding condition (10)

Cj - -Ck+ - 1

E) C' k+l,j > MAX (C'kj, Ck+lj, If C'kj' Ck+lj > 0 (11)

F) C k+l,j < min tc'kj' 'k+l,j, 1ý Gkj' Ck+l,j < 0 (12)

G) c' k+l,j > 0 if (C'kj + Ck+l,j) > 0 (13)

H) C'k+l,j < 0 If (C'kj + Ck+lj) < 0

(14)

Examiile Functions

The uncertainty, PThenj associated with the conclusion of a given

rule Rj is modified to incorporate contextual information. First, the

context is identified in terms of CJ, the context factor associated

with rule Rj. Then, form a function

f'(PThenj, C )

that should satisfy properties (1) - (5).

Consider,
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f h- (1+C )*(PThenj) (I-C), -<C_ -<0

f'(PThenj, C) (PThenj) (1-C1) 0<C. i -

1 C.-l

Now, suppose that rule RJ has M applicable context rules or

factors; then the resultant context factor C is evaluated as follows.

Let Cii: (i-.....m) be the M context factors applicable to

rule Rj.

Let C' be the resultar context factor that combines the

first k context rules or factors. Then implement the following

loop.

coj "lj

DO k-l, m-1

C' k+lj - g(C' 1j, Ck+l,j)

ENDDO

C - C'Mi

The function g must satisfy properties (7)-.(14). Consider the

following function.

To simplify the definition of g, define:

C'kj - a

Ck+l,j -b

C- (a+b)/2

x- (l-a
2 )I/n

y (1-b2)1/n

z -(xn + ynI1/2n

where n - same positive integer e (1,2,3...).

Then, define,
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a+b If a or b -0

g(ab) aly If lal Jb

JIb x If JIb 2_ jal

sgnS)*j~j1,otherwise.

7.2 The Effect of Context on Classification Results

This section briefly describes the results of a simulation that

demonstrates the effect of context information on specific

classification results. Consider the following example of a branch of

a rule structure that can lead to the results shown in Tables 1 and 2.

Here the relevant subsets of pattern classes in the "frame of

discernment" are identified as follows.

S : (TANK, APC, FA, NON-TANK, NON-APC, 9)

Then, consider the following rules.

1) IF weather is 'cloudy' (Pweather - 0.90)
and if light intensity is 'low' (Pintensity - 0.85)
THEN select the FLIR sensor

2) IF sensor is "FLIR", (Psensor - ?)
THEN select feature
set F, and execute an external (PF " ?)
algorithm to calculate confidence for the hypothesis, using
the combined evidence of 4 features.

This generates a bpa over the frame of discernment:

(m(TANK) ,m(APC) ,m(FA),,m(NON-TANK) ,m(NON-APC) ,M(9))

with the sun of all m (.) elements - 1.

Here, bp& refers to basic probability assignment and the [m(.)]'s

refer to masses corresponding to particular propositions with m(0)

being undistributed or not assigned (7-9].

Let the confidences in the validity of the given rules be as

follows:

PRulel - 0.95; PRule2 - 0.85
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Using the "*" (product operator) for "n", and the relationship,

n
PIF (rule R.) -. n P (rule RJ.

PIFI - Pweather * Pintensity - 0.765, where f is given by

the product.

Also, using
PThen (rule R - f(PIF(rule Ri), P Rule(rule R ))

or,

PThenl " f(PIFI' PRulel ' and using the

* Operator for f,

PThenl "PFLIR " PIFI * PRule - 0.73.

With PFLIR known,

PThen2 " PF " PIF2 * PRule2 - PFLUR * (0.85) - 0.62

Now, the validity of the evidence generated by F depends on the

"proper" selection of the elements of F, which are the features

extracted in the MID-LEVEL vision process as applied to a given scene.

Suppose that the above evidence is "discounted" by a factor a -

h(PF), where

a - l-(0.7+0.3*P) - 1-0.89 - 0.11, (71

Now, consider two applicable context rules for rule R 2

CR1: IF number of objects detected is less that number of
objects expected (in scene)

THEN increase confidence in any relevant object subsequently
located in the scene (C2 1 - 0.5).

ELSE decrease confidence in any additional objects
identified (C2 1 - -0.5)

CR2: IF object detected - object expected at a given location,

THEN increase confidence in an object being detected at that
location (C - 0.8)
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Suppose:

1) number of objects detected is 4;

2) number of objects expected is 3;
3) object expected in a given window (location) is a TANK;
4) the corresponding F yields a bpa vector M,

T
_ - (0.7 0.1 0.0 0.0 0.0 0.2]1

This bpa vector is then "discounted" by a to form,

M' - [0.62 0.9 0.0 0.0 0.0 0.29]. (Discounting is discussed below.)

The maximum mass of M is 0.62,which is associated with the class TANK,

and thus the intermediate classification by the rule base is TANK with

a confidence of 0.62.

Context rule C1 yields C2 1 - -0.5, while context rule CR2 yields

C2 2 - 0.8. Therefore, the resultant context factor for rule R 2 using

the function g defined above is given by,

C2 - g (-0.5, 0.8) - 0.33

Then, the final confidence in the TANK classification using function f

described above is given by,

conf(TANK) - f(0.62, 0.33) - 0.73.

Table 1. Classification results - Each entry indicates the
proportion of correct classifications from a sampled
set of available data.

bpa's using *-function bpa's using Fuzzy Integral
TANK1 TANK2 APC FA TANK1 TANK2 APC FA

SIMl: 8/8 14/17 2/24 13/13 17/17 17/33 47/66 13/13
polling

SIM9: 8/8 11/17 8/24 13/13 17/17 17/33 53/66 13/13
global
D-S
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Table 2. Simulation showing effect of "context".

No SENSOR C.M. used C.M. used # Of objdet CLSDET C Co

for TV for TV < # Of objexp -CLSEXP

1 TV NO NO N.A. N.A. 0.26 0.26
2 TV YES NO N.A. N.A. 0.26 0.05
3 TV NO YES N.A. N.A. 0.26 0.43
4 FLIR NO NO YES N.A. 0.21 0.73
5 FLIR NO NO N.A. YES 0.21 0.63
6 FLIR NO NO NO N.A. 0.26 0.07
7 FLIR NO NO NO YES 0.26 0.32
8 TV YES YES N.A. N.A. 0.26 0.28
9 FLIR NO YES NO NO 0.26 -0.0
0 FLIR YES NO YES YES 0.26 0.87

where, C.M. : Counter Measures
C : Initial Confidence in classification
C' : Confidence (C) modified with context
OBJDET :(# of) Objects detected so far
0BJEXP :(# of) Objects expected in image
CLSEXP : Object expected at current location
CLSDET : Object detected at current location
N.A. : Not Applicable

Discoumting and DimDarit-

Consider two sources, S1 and S2 of information, which can

generate a rule base for a rule-based decision structure to provide

solution in a given problem domain. Suppose that S1 is more noise or

error prone than S 2' For a given problem, using source S1 yields a

answer A with certainty.8 while using source S2 yields answer B with

certainty 0.6. Because source S1 is more noisy or error prone than

source S2, it is less reliable. In general, if the answers provided

by sources S1 and S2 are to be used together, one must compensate the

final conclusion of the decision structure based on source S2 for the

effect of information from source S .
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Discounting

Given a belief function Bel, defined over a-Frame of Discernment

S: (A-, A2, .... A)n, discount or degrade it by discounting the belief

in every proper subset A C S by a discount rate a. Thus, reduce m(A)

to (1-.)*m(A). Because the sum of all bpa's defined over S add to 1,

the total sum of all the discounted evidence must be added to m(O),

the undistributed or non-specific belief. The influence of this

source of evidence on the final outcome is now discounted or reduced

(because m(O) increases) [7,10].

Consider a pattern analysis problem, where S: (A,B) represents

two pattern classes. For two equally reliable sources S1 and S2 that

provide independent Judgements, assume

S: m1 (A) - 1; ml(B) - 0; ml(f) - 0

S2: m2 (A) - 0; m2 (B) - 1; m2(0) 0.

For two independent sources of evidence S1 and S2, define belief

functions (Bel) 1 and (Bel) 2 , respectively for a given proposition X.

Then, using Dempster's rule to combine evidence from sources S1 and S2

to generate a resultant belief Bel(X), as given by,

k-l- m1 (B))*m 2 (C)

BnC -

m(A) - amI(B)*m 2 (C)/k
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Bel(X) - m(A),

ACX

where k represents the measure of conflict between (Bel) and (Bel) 2 ,

as it accounts for the belief jointly allocated to 0 by the two

sources.

Here, because ml(a) - m2 (0) - 0, one arrives at an undefined

situation. To account for an apparent unreliability of sources S1 and

S2 , discount them by a so that

S,. m1 (A) - (1-a); a,.'(B) - 0, ml'(0) - a

S2 : m2 1(A) - 0; m2 (B) - (1-a); m2
9 (0) - a

The resultant bpa's (or mf's) after combination are,

SlS 2 : mf(A) - (a-a 2 )/(2a-a2 ) - mf(B)

mf(f) a 2/(2a-a2 )

One can show that (in the limit a-O) mf(A) - mf(B) - 0.5 and mf(f) -

0.

Suppose tb-• source S1 is unreliable or perhaps only more

unreliable than source $2; then discounting just source S1,

S,: m,'(A) - (1-a); m'(B)- 0; m.'() - a

S2 : m2 '(A) - (1-a); m2 #(B) - 1; m2 '() - 0.
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after combining,

SlIS 2 : mf(A) - 0, mf(B) - 1; mf(O) - 0

If one cannot determxne which source is more unreliable, first combine

information from sources S1 and S2 , then discount the results. This

will yield,

S1 iS 2 : mf(A) - (l-a)/2 - mf(B), mf(f) -a.

Suppose that a source of evidence or information, S, derives its

information from a number of "subsources' : (Sl,....S ), such as a

consisting of different sets of features used by a given classifier

algorithm. Each such set would contribute a set of beliefs regarding

an observed pattern. In general, one would assume that these beliefs

do not completely agree. One way to handle this case is to output a

vector, each component being associated with a degree of uncertainty.

Consider a set of belief functions ((Bel), ... , (Bel) M)

associated with m subsources of a given source S. Each (Bel)i vector

has n components, i-i,..., n with n - total number of proper subsets

of S.

Then, (Bel)i - [ail, .... an]T,

wher aij - (Beli(A^)). AJCS
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Consider a vector R,

Ta- [r 1 .... , rn]T, where

rk - ak, the standard deviation of (alk,..., amk), the set of all

the kth elements of each belief vector.

Now, the effective length of vector R in the p-norm sense is

given by,

"1/p

For each rk, it can be shown that

[ 0.5* (5 )1/2 m n

rkt 1=1/
0.5 * [ ]1/2 m odd

m

so that,

nl/P * (m/4(m.1))1/2

L r IMA-Lrmax-

nl/P * (mfl)/4m)
1 /2

(n is dimension of R).

Now, define the disparity of the m sub-sources (Sl,..., Sn} as,

d(sI .... PS) - LR/L•I, -[o0,].
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Using this measure to generate a between, say, [0,0.3],

a - 0.3*d(SI .... S MI

The beliefs resulting from combining the evidence of the m

subsources of S would be discounted by a, as defined above. This

discussion of disparity represents only a preliminary effort. Further

study is necessary to establish its efficacy. A disparity measure

could be applied to other methods of uncertainty propagation. For

example, it could be used to generate weights associated with each of

the main sources of evidence before they are combined using the method

applicable to a given scheme.

The Direct Combination of Context: A PreliminarX Investiration

Suppose that the context factors were allowed to assume values

over (--,-) instead of over [-1,1] as was proposed earlier. For a

given rule R , define:

j : kth context factor (describing or resulting from the k h

context rule) applicable to rule R .

N total number of context rules applicable to rule R.

C' : algebraic sim of the N context factors applicable to rule

Then,

N1
c 0j - Ckj -..

k-i
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Now, in order to incorporate this approach into rule Rj, it has been

necessary to restrict the resultant context factor, C to be defined

over [-1,1]. In order to retain this property, one can define a

one-to-one mapping between C' :(-.,.) and C : (-1,1). By doing this,

one will end-up with a Cj:[-1,1 ], which can then be used in

PThenj - f(PThenj,C ).

Such a mapping can be typically represented by the following sketch:

in particular, let Cj - tanh (C iC 0 where C is a 'tuning"

parameter which adjusts the slope or *sharpness" of the mapping near

the origin.

For this mapping, note that

a) for C' > 5 C - 1.0

b) for C < -5C, C - 1.0

Thus, the assignment of relative values to the individual Ckj's need

not be as uarbitraryu as it otherwise might be if normalization were

retained.

For a fixed value for C0 , the individual Ck. values can be added

together directly before the sum is mapped, one-to-one onto Ci. One

can also estimate the effect of an individual CIO value on the
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resultant value of C ' and then on C.. This method of combining
j .3

context factors preserves the properties of commutativity and

associativity.
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